
Copyright 2017 Trend Micro Inc.1

Data Lake:
centralize in on-prem vs. decentralize on cloud

Jeff Hung / Trend Micro

Sep 30, 2017



Copyright 2017 Trend Micro Inc.2

@jeffhung

• Smart Protection Network (SPN)

• Big-data Platform & Solution

• Hadoop PROD since 2009

• Work on AWS/EMR since 2014
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500,000,000
total malware in 2016 

Malware Explosion
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Web
Crawler

Trend Micro
Endpoint
Protection

Trend Micro
Mail Protection

Trend Micro 
Web Protection

Honeypot

CDN / xSP
Researcher 
Intelligence

From data to solution

Threat Protections

Regional distribution of ransomware threats
from January 2016 to March 2017
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2009
~40 Hadoop nodes

~15 Service/user accounts

3 Teams

<50 TB storage

<100 Jobs per day
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2014
~250 Hadoop nodes

~140 Service/user accounts

13 Teams

~1,500 TB storage

>16,000 Jobs per day
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The SPN Journey

Why cloud?

2009 2014 2017

on-prem

on-cloud

AWS

Data
Center

Scalability Agility Cost
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Big-data on the Cloud

EMR
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Analytic EngineData Lake
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Data Lake
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“If you think of a datamart as a store of bottled water – cleansed and 
packaged and structured for easy consumption – the data lake is a large 
body of water in a more natural state. The contents of the data lake 
stream in from a source to fill the lake, and various users of the lake can 
come to examine, dive in, or take samples.”

– James Dixon, CTO of Pentaho

Data Lake

Exam / Dive in / Take Example

Stream in Dump in
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Data Lake fixes 2 problems

• Unknown Questions

• Information Silos
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Unknown Questions

• You don’t know what you don’t know

• Premature optimization is the root of all evil

Data Warehouse/Mart vs. Data Lake

structured and preprocessed 
data

DATA structured / semi-structured / 
unstructured / raw data

schema-on-write PROCESSING schema-on-read

expensive for large data volume STORAGE designed for low-cost storage
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• Incompatible data system built by different teams
– Conway’s Law & NIH Syndrome

– Technology Limitation

• Hadoop come to rescue
– Free technology

– Free computing

– Free storage

Information Silos

But...
– Cost justification

– Development agility
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Data Lake fixes 2 problems – How ?

• Unknown Questions  Preserve low-level visibility

• Information Silos Make accessing data easy

We’ve done these right in on-premises datacenter.
Now we need to make them work on Cloud, too.
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vs.

Centralized Infrastructure 

One Big Hadoop Cluster 

Fine-grain Resource Sharing 

Single Big-data Stack 

UNIX Style Permission Control 

 Decentralized on Cloud Services

Many EMR Clusters / S3 Buckets

 Go Dutch & Pay-as-you-Go

 Diverse Technology

 Cloud Compatible ACL

Things apply to both scenarios: File Format & Schema Design

On-Prem vs. On Cloud
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Centralized Infrastructure

• Have only one datacenter

• PROD/STG in same place

• Jobs & data in same cluster

• Do everything on our own

Decentralized on Cloud Services

• Could use multiple AWS regions

• PROD/STG in different regions

• Jobs & data in different places

• Could leverage cloud services

vs

Access data in one place Access data from anywhere
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One Big Hadoop Cluster

• Runs all applications
in same big cluster

• Bigger cluster = better flexibility

• Resource managed by YARN

Many EMR Clusters / S3 Buckets

• Each applications runs
in its own EMR cluster

• Specific cluster = better flexibility

• Resource managed by AWS

vs

Work in shared place Work in my place
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Fine-grain Resource Sharing

• Finer granularity by CPU/Mem

• Centralized budget account

• Do usage statistics on our own

Go Dutch & Pay-as-you-Go

• Granularity in EMR level

• Budget in each application team

• AWS provides billing reports

vs

Finer usage management Manage my own works
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Single Big-data Stack

• Tend to select best practices 
that are well tested

• Other technology brings trouble

• Easy to optimize from infra-level

• Access through HDFS interface

Diverse Technology

• Tend to allow using different 
AWS services

• Technologies covered by AWS

• Infra optimization rely on AWS

• Different access mechanism

vs

Use verified best practice Use tools I like
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UNIX Style Permission Control

• UNIX style “file” permissions

• Tend to make data lake
read-only to everybody

• No widely adopted encryptions

Cloud Compatible ACL

• IAM-based ACL policies

• Allow granting access rights
in dataset level

• S3 provides native encryptions

vs

Simple that just works Complex but rich
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Make Accessing Data Easy

On-prem in datacenter

• Raw data is read-only to 
everybody

• Canonical software stack with 
best practices

• Plan ahead the infra by strong 
team

On-cloud in AWS

• Simplify permission granting 
process

• Encourage leveraging AWS 
services

• Pay-as-you-Go by every involved 
teams
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• Size reduction to lower storage consumption

• Read/write performance to speed up computing

• Data characteristics to hold complex data structure

• Schema evolution which changes from time to time

• Tool interoperability for different kinds of access

File Format & Schema Design Considerations

23

• Size reduction

• Read/write performance

• Data characteristics

• Schema evolution

• Tool interoperability
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Data Characteristics 

• The characteristics of the data schema
– What will not work?

– The mitigations

Fundamental characteristics and principles for “logs”:
• Records shall be independent – don’t reference other record

• Records shall be self-contained – repeat info in path

• Record exist means something, not-exist may mean another

These can only be documented  need schema portal

24
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Data Characteristics – Recursion

• Avoid recursive schema

• Recursive schema?

25

ProcessInfo {
process_id: long,
image_path: chararray,
image_sha1: bytearray,
is_detected: int,
action: long,
action_result: {
terminate: chararray

},
children_processes: [
ProcessInfo

]
}

root_process: ProcessInfo;

Bad Design
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Data Characteristics – Recursion

• Mitigation: array and index/id

26

0

1

2

3

... ...

process_id 652

parent_process_id 360

... ...

process_id 696

parent_process_id 652

... ...

process_id 952

parent_process_id 696

... ...

process_id 828

parent_process_id 696

... ...

ProcessInfo {
process_id: long,
image_path: chararray,
image_sha1: bytearray,
is_detected: int,
action: long,
action_result: {
terminate: chararray

},
parent_process_id: long

}

process_infos: [ ProcessInfo ];

Good Design
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Data Characteristics – Tabular or Nested?

• Depends on data nature
– Raw data like feedback logs are often nested

– Intermediate data are often tabular

• File Format Capability

• Strategy
– Parquet for nested data

– ORC for tabular data

27

Protobuf Parquet ORC key/value pairs

Good at nested data Good at tabular data
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• Avoid custom key names for KV pairs

– Runtime-determined key names are hard to process

– Hard to parallelize key-enumeration (tool constraint)

• Mitigation

Data Characteristics – Custom Key Name

28

[
{ "name": "key1", "value": "value1" },
{ "name": "key2", "value": "value2" },
...

]

{ "key1": "value1", "key2": "value2", ... }
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Data Characteristics – Not All JSON Works

• In summary, not all data presentable by JSON are easy to 
process using big-data tools & other formats

• Be careful to design schema if you choose JSON

29

Characteristic Parquet ORC JSON

Recursion No Yes Yes

Tabular vs. Nested Nested Tabular Yes

Custom Key Name No No Yes
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• Schema evolves from time to time
– Backward compatible is not that simple as imaged

– In reality each role will have multiple versions

• Roles: 

Schema Evolution

30

Storage (HDFS or S3)
Data Provider Data Consumer

Storer Loader
DataDataData
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Product/v1 Validator/v3 Data/v1 Loader/v3 Service1/v1

Product/v2 Validator/v3 Data/v2 Loader/v3

Product/v3 Validator/v3 Data/v3 Loader/v3 Service2/v3

31

Data Consumer

Storer DataDataData Loader

Data Provider

Product/v1 Validator/v1 Data/v1 Loader/v1 Service1/v1

Product/v1 Validator/v2 Data/v1 Loader/v2 Service1/v1

Product/v2 Validator/v2 Data/v2 Loader/v2 Service2/v2

Product/v1 Validator/v3 Data/v1 Loader/v2 Service1/v1

Product/v2 Validator/v3 Data/v2 Loader/v2 Service2/v2

Product/v3 Validator/v3 Data/v3 Loader/v2

Year 1 – Only one version in the universe

Year 2 – Second version appeared while v1 still exist

Year 3 – Collect v3 data in advance due to schedule or to accumulate data

Year 4 – Data consumer catch up and start using v3 data
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• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

Schema Evolution – Requirements

32

Processing Program
Data File

Future 
Schema

Data File

Current 
SchemaLo

ad

Sa
ve

Internal Structure

Current 
Schema

Process

Data File

Current 
Schema

Missing
Fields

=
Default Value
or NULL

Unknown
Fields

=
Invisible
or Ignore

Data File

Previous 
Schema

– Can load current version

– Can load previous version

– Can load future version
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Data File

Current 
Schema

Data File

Previous 
Schema

Data File

Future 
Schema

Processing Program
Data File

Current 
Schema

Data File

Previous 
Schema

Data File

Future 
Schema

• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

Schema Evolution – Requirements

33

– Can load current version

– Can load previous version

– Can load future version

– Store as original version
when collecting data

Lo
ad

Sa
ve

Internal Structure

Current 
Schema

Process

Missing
Fields

=
Default Value
or NULL

Unknown
Fields

=
Invisible
or Ignore
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• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

– The internal structure of loaded data in Pig and Spark
cannot preserve entire original structure

– Write data ingestion tool in Java whenever possible

Schema Evolution – Requirements

34

– Can load current version

– Can load previous version

– Can load future version

– Store as original versionRequirement SF+PB Parquet ORC SF+PB Parquet ORC Parquet ORC

Load Previous v v v v v v v v

Load Current v v v v v v v v

Load Future v v v v v v v v

Save Original v v v x x x x x

Language Java Pig Spark
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Preserve low-level visibility

• Choose file format based on usage scenario

• Deview schema to avoid bad design
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Wrap ups

• Preserve low-level visibility
– Choose file format wisely

– Design schema carefully

• Make accessing data easy
– On-prem & on-cloud are different

– Do something to lower barrier
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Any Questions?


