
Copyright 2017 Trend Micro Inc.1

Data Lake:
centralize in on-prem vs. decentralize on cloud

Jeff Hung / Trend Micro

Sep 30, 2017

Copyright 2017 Trend Micro Inc.2

@jeffhung

• Smart Protection Network (SPN)

• Big-data Platform & Solution

• Hadoop PROD since 2009

• Work on AWS/EMR since 2014

Copyright 2017 Trend Micro Inc.3 Copyright 2017 Trend Micro Inc.3

500,000,000
total malware in 2016

Malware Explosion

Copyright 2017 Trend Micro Inc.4

Web
Crawler

Trend Micro
Endpoint
Protection

Trend Micro
Mail Protection

Trend Micro
Web Protection

Honeypot

CDN / xSP
Researcher
Intelligence

From data to solution

Threat Protections

Regional distribution of ransomware threats
from January 2016 to March 2017

Copyright 2017 Trend Micro Inc.5

2009
~40 Hadoop nodes

~15 Service/user accounts

3 Teams

<50 TB storage

<100 Jobs per day

Copyright 2017 Trend Micro Inc.6

2014
~250 Hadoop nodes

~140 Service/user accounts

13 Teams

~1,500 TB storage

>16,000 Jobs per day

Copyright 2017 Trend Micro Inc.7

The SPN Journey

Why cloud?

2009 2014 2017

on-prem

on-cloud

AWS

Data
Center

Scalability Agility Cost

Copyright 2017 Trend Micro Inc.8

Big-data on the Cloud

EMR

Copyright 2017 Trend Micro Inc.9 Copyright 2017 Trend Micro Inc.9

Analytic EngineData Lake

Copyright 2017 Trend Micro Inc.10

Data Lake

Copyright 2017 Trend Micro Inc.11

“If you think of a datamart as a store of bottled water – cleansed and
packaged and structured for easy consumption – the data lake is a large
body of water in a more natural state. The contents of the data lake
stream in from a source to fill the lake, and various users of the lake can
come to examine, dive in, or take samples.”

– James Dixon, CTO of Pentaho

Data Lake

Exam / Dive in / Take Example

Stream in Dump in

Copyright 2017 Trend Micro Inc.12

Data Lake fixes 2 problems

• Unknown Questions

• Information Silos

Copyright 2017 Trend Micro Inc.13

Unknown Questions

• You don’t know what you don’t know

• Premature optimization is the root of all evil

Data Warehouse/Mart vs. Data Lake

structured and preprocessed
data

DATA structured / semi-structured /
unstructured / raw data

schema-on-write PROCESSING schema-on-read

expensive for large data volume STORAGE designed for low-cost storage

Copyright 2017 Trend Micro Inc.14

• Incompatible data system built by different teams
– Conway’s Law & NIH Syndrome

– Technology Limitation

• Hadoop come to rescue
– Free technology

– Free computing

– Free storage

Information Silos

But...
– Cost justification

– Development agility

Copyright 2017 Trend Micro Inc.15

Data Lake fixes 2 problems – How ?

• Unknown Questions  Preserve low-level visibility

• Information Silos Make accessing data easy

We’ve done these right in on-premises datacenter.
Now we need to make them work on Cloud, too.

Copyright 2017 Trend Micro Inc.16

vs.

Centralized Infrastructure 

One Big Hadoop Cluster 

Fine-grain Resource Sharing 

Single Big-data Stack 

UNIX Style Permission Control 

 Decentralized on Cloud Services

Many EMR Clusters / S3 Buckets

 Go Dutch & Pay-as-you-Go

 Diverse Technology

 Cloud Compatible ACL

Things apply to both scenarios: File Format & Schema Design

On-Prem vs. On Cloud

Copyright 2017 Trend Micro Inc.17

Centralized Infrastructure

• Have only one datacenter

• PROD/STG in same place

• Jobs & data in same cluster

• Do everything on our own

Decentralized on Cloud Services

• Could use multiple AWS regions

• PROD/STG in different regions

• Jobs & data in different places

• Could leverage cloud services

vs

Access data in one place Access data from anywhere

Copyright 2017 Trend Micro Inc.18

One Big Hadoop Cluster

• Runs all applications
in same big cluster

• Bigger cluster = better flexibility

• Resource managed by YARN

Many EMR Clusters / S3 Buckets

• Each applications runs
in its own EMR cluster

• Specific cluster = better flexibility

• Resource managed by AWS

vs

Work in shared place Work in my place

Copyright 2017 Trend Micro Inc.19

Fine-grain Resource Sharing

• Finer granularity by CPU/Mem

• Centralized budget account

• Do usage statistics on our own

Go Dutch & Pay-as-you-Go

• Granularity in EMR level

• Budget in each application team

• AWS provides billing reports

vs

Finer usage management Manage my own works

Copyright 2017 Trend Micro Inc.20

Single Big-data Stack

• Tend to select best practices
that are well tested

• Other technology brings trouble

• Easy to optimize from infra-level

• Access through HDFS interface

Diverse Technology

• Tend to allow using different
AWS services

• Technologies covered by AWS

• Infra optimization rely on AWS

• Different access mechanism

vs

Use verified best practice Use tools I like

Copyright 2017 Trend Micro Inc.21

UNIX Style Permission Control

• UNIX style “file” permissions

• Tend to make data lake
read-only to everybody

• No widely adopted encryptions

Cloud Compatible ACL

• IAM-based ACL policies

• Allow granting access rights
in dataset level

• S3 provides native encryptions

vs

Simple that just works Complex but rich

Copyright 2017 Trend Micro Inc.22

Make Accessing Data Easy

On-prem in datacenter

• Raw data is read-only to
everybody

• Canonical software stack with
best practices

• Plan ahead the infra by strong
team

On-cloud in AWS

• Simplify permission granting
process

• Encourage leveraging AWS
services

• Pay-as-you-Go by every involved
teams

Copyright 2017 Trend Micro Inc.23

• Size reduction to lower storage consumption

• Read/write performance to speed up computing

• Data characteristics to hold complex data structure

• Schema evolution which changes from time to time

• Tool interoperability for different kinds of access

File Format & Schema Design Considerations

23

• Size reduction

• Read/write performance

• Data characteristics

• Schema evolution

• Tool interoperability

Copyright 2017 Trend Micro Inc.24

Data Characteristics

• The characteristics of the data schema
– What will not work?

– The mitigations

Fundamental characteristics and principles for “logs”:
• Records shall be independent – don’t reference other record

• Records shall be self-contained – repeat info in path

• Record exist means something, not-exist may mean another

These can only be documented  need schema portal

24

Copyright 2017 Trend Micro Inc.25

Data Characteristics – Recursion

• Avoid recursive schema

• Recursive schema?

25

ProcessInfo {
process_id: long,
image_path: chararray,
image_sha1: bytearray,
is_detected: int,
action: long,
action_result: {
terminate: chararray

},
children_processes: [
ProcessInfo

]
}

root_process: ProcessInfo;

Bad Design

Copyright 2017 Trend Micro Inc.26

Data Characteristics – Recursion

• Mitigation: array and index/id

26

0

1

2

3

... ...

process_id 652

parent_process_id 360

... ...

process_id 696

parent_process_id 652

... ...

process_id 952

parent_process_id 696

... ...

process_id 828

parent_process_id 696

... ...

ProcessInfo {
process_id: long,
image_path: chararray,
image_sha1: bytearray,
is_detected: int,
action: long,
action_result: {
terminate: chararray

},
parent_process_id: long

}

process_infos: [ProcessInfo];

Good Design

Copyright 2017 Trend Micro Inc.27

Data Characteristics – Tabular or Nested?

• Depends on data nature
– Raw data like feedback logs are often nested

– Intermediate data are often tabular

• File Format Capability

• Strategy
– Parquet for nested data

– ORC for tabular data

27

Protobuf Parquet ORC key/value pairs

Good at nested data Good at tabular data

Copyright 2017 Trend Micro Inc.28

• Avoid custom key names for KV pairs

– Runtime-determined key names are hard to process

– Hard to parallelize key-enumeration (tool constraint)

• Mitigation

Data Characteristics – Custom Key Name

28

[
{ "name": "key1", "value": "value1" },
{ "name": "key2", "value": "value2" },
...

]

{ "key1": "value1", "key2": "value2", ... }

Copyright 2017 Trend Micro Inc.29

Data Characteristics – Not All JSON Works

• In summary, not all data presentable by JSON are easy to
process using big-data tools & other formats

• Be careful to design schema if you choose JSON

29

Characteristic Parquet ORC JSON

Recursion No Yes Yes

Tabular vs. Nested Nested Tabular Yes

Custom Key Name No No Yes

Copyright 2017 Trend Micro Inc.30

• Schema evolves from time to time
– Backward compatible is not that simple as imaged

– In reality each role will have multiple versions

• Roles:

Schema Evolution

30

Storage (HDFS or S3)
Data Provider Data Consumer

Storer Loader
DataDataData

Copyright 2017 Trend Micro Inc.31 Copyright 2017 Trend Micro Inc.31

Product/v1 Validator/v3 Data/v1 Loader/v3 Service1/v1

Product/v2 Validator/v3 Data/v2 Loader/v3

Product/v3 Validator/v3 Data/v3 Loader/v3 Service2/v3

31

Data Consumer

Storer DataDataData Loader

Data Provider

Product/v1 Validator/v1 Data/v1 Loader/v1 Service1/v1

Product/v1 Validator/v2 Data/v1 Loader/v2 Service1/v1

Product/v2 Validator/v2 Data/v2 Loader/v2 Service2/v2

Product/v1 Validator/v3 Data/v1 Loader/v2 Service1/v1

Product/v2 Validator/v3 Data/v2 Loader/v2 Service2/v2

Product/v3 Validator/v3 Data/v3 Loader/v2

Year 1 – Only one version in the universe

Year 2 – Second version appeared while v1 still exist

Year 3 – Collect v3 data in advance due to schedule or to accumulate data

Year 4 – Data consumer catch up and start using v3 data

Copyright 2017 Trend Micro Inc.32

• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

Schema Evolution – Requirements

32

Processing Program
Data File

Future
Schema

Data File

Current
SchemaLo

ad

Sa
ve

Internal Structure

Current
Schema

Process

Data File

Current
Schema

Missing
Fields

=
Default Value
or NULL

Unknown
Fields

=
Invisible
or Ignore

Data File

Previous
Schema

– Can load current version

– Can load previous version

– Can load future version

Copyright 2017 Trend Micro Inc.33

Data File

Current
Schema

Data File

Previous
Schema

Data File

Future
Schema

Processing Program
Data File

Current
Schema

Data File

Previous
Schema

Data File

Future
Schema

• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

Schema Evolution – Requirements

33

– Can load current version

– Can load previous version

– Can load future version

– Store as original version
when collecting data

Lo
ad

Sa
ve

Internal Structure

Current
Schema

Process

Missing
Fields

=
Default Value
or NULL

Unknown
Fields

=
Invisible
or Ignore

Copyright 2017 Trend Micro Inc.34

• File format requirement to enable schema evolution
– Mostly “Loader” requirement, for Pig and Spark

• Requirements

– The internal structure of loaded data in Pig and Spark
cannot preserve entire original structure

– Write data ingestion tool in Java whenever possible

Schema Evolution – Requirements

34

– Can load current version

– Can load previous version

– Can load future version

– Store as original versionRequirement SF+PB Parquet ORC SF+PB Parquet ORC Parquet ORC

Load Previous v v v v v v v v

Load Current v v v v v v v v

Load Future v v v v v v v v

Save Original v v v x x x x x

Language Java Pig Spark

Copyright 2017 Trend Micro Inc.35

Preserve low-level visibility

• Choose file format based on usage scenario

• Deview schema to avoid bad design

Copyright 2017 Trend Micro Inc.36

Wrap ups

• Preserve low-level visibility
– Choose file format wisely

– Design schema carefully

• Make accessing data easy
– On-prem & on-cloud are different

– Do something to lower barrier

Copyright 2017 Trend Micro Inc.37 Copyright 2017 Trend Micro Inc.37

Any Questions?

